A proton-exchange membrane, or polymer-electrolyte membrane (PEM), is a semipermeable membrane generally made from ionomers and designed to conduct protons while acting as an electronic insulator and reactant barrier, e.g. to oxygen and hydrogen gas. This is their essential function when incorporated into a membrane electrode assembly (MEA) of a proton-exchange membrane fuel cell or of a proton-exchange membrane electrolyser: separation of reactants and transport of protons while blocking a direct electronic pathway through the membrane. PEM fuel cells use a solid polymer membrane (a thin plastic film) which is permeable to protons when it is saturated with water, but it does not conduct electrons.
An anion exchange membrane (AEM) is a semipermeable membrane generally made from ionomers and designed to conduct anions while being impermeable to gases such as oxygen or hydrogen. Anion exchange membranes are used in electrolytic cells and fuel cells to separate reactants present around the two electrodes while transporting the anions essential for the cell operation. An important example is the hydroxide anion exchange membrane used to separate the electrodes of a direct methanol fuel cell (DMFC) or direct-ethanol fuel cell (DEFC).